1H NMR Spectroscopy of [FeFe] Hydrogenase: Insight into the Electronic Structure of the Active Site
نویسندگان
چکیده
The [FeFe] hydrogenase HydA1 from Chlamydomonas reinhardtii has been studied using 1H NMR spectroscopy identifying the paramagnetically shifted 1H resonances associated with both the [4Fe-4S]H and the [2Fe]H subclusters of the active site "H-cluster". The signal pattern of the unmaturated HydA1 containing only [4Fe-4S]H is reminiscent of bacterial-type ferredoxins. The spectra of maturated HydA1, with a complete H-cluster in the active Hox and the CO-inhibited Hox-CO state, reveal additional upfield and downfield shifted 1H resonances originating from the four methylene protons of the azadithiolate ligand in the [2Fe]H subsite. The two axial protons are affected by positive spin density, while the two equatorial protons experience negative spin density. These protons can be used as important probes sensing the effects of ligand-binding to the catalytic site of the H-cluster.
منابع مشابه
Solvent Effect on the Molecular Structure, Chemical Reactivity and Spectroscopy Properties of Z-Ligustilide: A Main Active Component of Multitude Umbelliferae Medicinal Plants
In this investigation, the structural, electronic properties, 13C and 1H NMR parameters and firsthyperpolarizability of Z-Ligustilide were explored. As well, the solvent effect on structural parameters, frontier orbital energies, electronic transitions, and 13C and 1H NMR parameters was illustrated based on Polarizable Continuum Model (PCM).These consequences specify that the polarity of solven...
متن کاملThe [FeFe]-hydrogenase maturase HydF from Clostridium acetobutylicum contains a CO and CN- ligated iron cofactor.
Biosynthesis of the [FeFe] hydrogenases active site (H-cluster) requires three maturation factors whose respective roles are not understood yet. The clostridial maturation enzymes (CaHydE, CaHydF and CaHydG) were homologously overexpressed in their native host Clostridium acetobutylicum. CaHydF was able to activate Chlamydomonas reinhardtii [FeFe] hydrogenase apoprotein (CrHydA1(apo)) to almost...
متن کاملHydrogen Production Catalyzed by Bidirectional, Biomimetic Models of the [FeFe]-Hydrogenase Active Site
Active site mimics of [FeFe]-hydrogenase are shown to be bidirectional catalysts, producing H2 upon treatment with protons and reducing equivalents. This reactivity complements the previously reported oxidation of H2 by these same catalysts in the presence of oxidants. The complex Fe2(adtBn)(CO)3(dppv)(PFc*Et2 ) ([1]0; adtBn = (SCH2)2NBn, dppv = cis-1,2-bis(diphenylphosphino)ethylene, PFc*Et2 =...
متن کاملCharacterization of a monocyanide model of FeFe hydrogenases - highlighting the importance of the bridgehead nitrogen for catalysis.
An azadithiolate bridged monocyanide derivative [Fe2(adt)(CO)5(CN)]- of [Fe2(adt)(CO)4(CN)2]2- has been prepared and extensively characterized as a model of the [FeFe]-hydrogenase active site, using a combination of FTIR spectroscopy, electrochemical methods and catalytic assays with chemical reductants. The presence of two basic nitrogen sites opens up multiple protonation pathways, enabling c...
متن کاملInfluence of an electron-deficient bridging o-carborane on the electronic properties of an [FeFe] hydrogenase active site model.
The IR carbonyl stretching frequencies of [Fe2(SRS)(CO)6] complexes correlate well with their first reduction potential; an [FeFe] hydrogenase model with a very mild reduction potential has been realized by using a strongly electron deficient carborane-dithiolate bridge.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 140 شماره
صفحات -
تاریخ انتشار 2018